الموضوع: التمثيل الضوتي
عرض مشاركة واحدة
قديم Sep-Mon-2011   #3
مؤسس المنتدى( 0504464282)


الصورة الرمزية فهد محمد بن ناحل
فهد محمد بن ناحل متواجد حالياً

بيانات اضافيه [ + ]
 رقم العضوية : 1
 تاريخ التسجيل :  Mar 2007
 أخر زيارة : منذ 6 يوم (09:49 AM)
 المشاركات : 22,876 [ + ]
 التقييم :  9080
 الدولهـ
Saudi Arabia
 الجنس ~
Male
لوني المفضل : Cadetblue
افتراضي



طبيعة الضوء

عند تحويل الأيدروجين الي هليوم في جسم الشمس تنطلق أنواع مختلفة من الأشعة ورغم هذه الاختلافات بين أنواع الاشعة الا أنها اجمالا تعتبر كجزء من طاقة الاطياف المستمرة والتي تختلف فيما بينها في طول موجات تلك الاشعة
ان مجال الضوء المرئي يمتد من طول موجي 400 الي 700 ملليمكرون تقريبا هذه الموجات تعتبر مسارا لجزيئات متناهية في الصغر هي الفوتونات والتي يمكن تمثيل كل منها بكيس صغير مملوء بطاقة معينة ( تتوقف علي نوع الضوء )

يؤدي تصادم تلك الفوتونات بالصبغات النباتية التي فقد طاقتها وتكتسبها الصبغة وتحرك الالكترونات الواقعة في مستويات مختلفة حول أنوية ذرات هذه الصبغات الي مستويات من الطاقة أعلي من المستوي التي كانت واقعة به وتصبح بذلك الصبغة في حالة نشطة وتستمر في هذه الحالة لمدة قصيرة جدا تصل الي جزء من الثانية حيث يسقط بعدها الالكترون الي مجالة السابق الاقل نشاطا ( اي اقرب الي النواة ) , والطاقة الناتجة من فقد هذا الالكترون لطاقتة تنفرد عملا معينا وهذه الطاقة والتي تسمي بطاقة التنشيط تنطلق في صورة حرارة منعكسة أو بأعطاء هذه الطاقة لمركب آخر أو تستغل في تفاعل كيميائي معين كما يحدث في عمليات الاكسدة و الاختزال.
وصبغات النبات المختلفة القدرة علي القيام بكل هذه الظواهر السابق ذكرها فاثناء عملية البناء الضوئي نجد ان جزيئات الكلورفبل تفقد وتعيد كمية غير قليلة من الضوء بينما نجد ان بعض الصبغات الاخري مثل الكاروتنويدات و المصاحبة للكلورفيل تمتص الطاقة الضوئية وتنقلها للكلورفيل اما التي يتحصل عليها الكلورفيل فيستغلها في اختزال بعض المركبات اثناء عملية البناء الضوئي للكربوهيدرات

صبغات البناء الضوئي
توجد الصبغات في البلاستيدات وتنقم الى :

1) صبغة الكلورفيل Chlorophyll pigments الكلورفيل هو الصبغة الخضراء في النبات وهو أهم الصبغات لعملية التمثيل الضوئي و حتي اليوم أمكن التعرف علي ثمان انواع من الكلورفيل و هي كلورفيل E , d , c , b ,a , Chiorozum chlorophyll Bacteriochlorophyll (b) bacteriochlorophtll ( a ) أهمهم علي الاطلاق هى كلوروفيل b ,a لتواجدهم في بلاستيدات الخلايا النباتية اما بقية الأنواع فتوجد في الكائنات الدقيقة ذاتية التغذية مثل الطحالب الخضراء و البكتريا

كلوروفيل a يعطي لون اخضر مصفر كلوروفيل b عادة يكون ذو لون اخضر مزرق . اما عن التركيب الكيميائي للكلورفيل فهو يتركب من أربع وحدات من البروفيرين ويوجد المغنسيوم في صورتة الغير متأنية يتوسط جزئ الكلورفيل
ويعتبر الكلورفيلات عبارة عن استرات ( اتحاد حامض بكحول ) لأحماض ثنائية تسمي الكلوروفللين chlorophyllins متحدة مع الميثانول وكحول الفيتول

ويختلف كلورفيل أ عن كلورفيل ب في ارتباط ذرة الكربون رقم 3 في جزئ الكلورفيل أ بمجموعه ميثيل في حين تكون في كلورفيل ب مجموعه الدهيد
وقد لوحظ ان غالبية امتصاص الكلورفيل للضوء يكون في مجال الطيفين الأزرق و الأحمر اي علي موجات 430-650 ملليمكرون . الا ان هناك بعض الشواهد على ان كفاءة عملية البناء الضوئي بالنباتات الخضراء تكون أعلي عند تعويض النباتات للضوء الازرق ( فيما عدا الكلورفيل البكتيري والذي يمتص الاشعة تحت الحمراء و الطيف الازرق البنفسجي )
2- الكاروتنيدات Carotenoid pigments هي مجموعه من الصبغات التي لها علاقة وثيقة بعملية البناء الضوئي وهي مركبات ليبيدية يتراوح لونها من الأصفر حتي البنفسجي وتتواجد في البلاستيدات الخضراء جنبا الي جنب مع الكلورفيل بنسبة1: 3,وتعتبر جميع الكاروتنيدات هيدروكربونات غير مشبعه و سريعه الأكسدة في وجود الأوكسجين وتنقسم هذه الصبغات الي مجموعتين هما الكاروتين مثل كاروتين b , a والليكوبين والزانثوفيل
ولكن الزانثوفيل فهى اكثر أكسدة من الأولي حيث يقل عنها بذرة هيدروجين ويوجد بها ذرتي أواكسجين مع عدم وجوده بالكاروتينات وله عده انواع تمتص الكاروتينات الاطياف اساسا الطيف الازرق(460- 480 ملليمكرون) من الضوء وقد تمتص هذه الصبغات جزءا من الطيف الازرق والبنفسجي وقد تبين أيضا انها تمتص بعض الموجات الخاصة بالاشعة الفوق بنفسجية وتقوم هذه الصبغات بالاحاطة بجزيئات الكلورفيل وكثيرا ما تحميه من الاكسدة الضوئية وكذلك تمتص الطاقة وتنقلها الى كلورفيل

الجهاز التمثيلى
تتم عملية البناء الضوئي داخل البلاستيدات الخضراء التي تتركب من جسيمات محاطة بغشاء سيتويلازمي مزدوج يحوي بداخلة سائل stroma وبها صفائح تعرف بال Granum تسمي كل واحدة من تلك الصفائح باسم Grana تحتوي علي الصبغات و الانزيمات الخاصة بعملية التمثيل .

يوجد بكل بلاستيدة 60 جرانا و يتم تحول الطاقة الضوئية الي طاقة كيميائية فىGrana حيث تحتوي علي الصبغات و الأنزيمات الخاصة بعملية التمثيل . وينفرد الأوكسجين داخل الجرانا في حين يتم في الاستروما اختزال ثاني اكسيد الكربون وتكون الكربوهيدرات

ميكانيكية عملية البناء الضوئي
يمكن تقسيم البناء الضوئي الي جزئين رئيسين هما التفاعل الضوئي أو Hill reaction ، و الجزء الثاني و يعرف باسم Dark reaction ويعرف الأول باسم طور التحليل الضوئي photolysis فية يمتص الكلورفيل الطاقة الضوئية التي تشجع انشطار الماء الي أوكسجين وايدروجين , بتصاعد الأوكسجين اما الأيدروجين فيتحد مع مستقبل هو NADP
نتيجة امتصاص الكلورفيل للضوء الأزرق والأحمر يفقد الكترونا فتنجذب اللاكترونات النشطة السالبة داخل الجرانا بواسطة مستقبلات الكترونية وفي اثناء عملية الانتقال فان طاقة الكترون تنخفض والطاقة المنطلقة تمتص بواسطة ADP لتكوين ATP.
اما التفاعل الثاني والمعروف Dark reaction وهو تفاعل كيميائي يعرف باسم Co2 fixation cycle هذا التفاعل لا يحتاج الي ضوء وليس معني ان اسمه تفاعل الظلام أنه يتم فى الظلام بل يعني ان الضوء غير ضروري لاتمامه و يتم فية تثبيت Co2 و تكوين المواد الكربوهيدراتية .

اولا : التفاعل الضوئي او تفاعل هيل : Hill reaction
قام العالم Robert Hill سنة 1937 بمحاولة لدراسة تفاعلات عملية البناء الضوئي عن طريق اجراء بحوثة علي بلاستيدات خضراء معزولة بدلآ من اجرائها علي نباتات كاملة وقد وجد أن البلاستيدات الخضراء المعزولة كانت قادرة علي انتاج الأوكسجين آي قادره علي اتمام التفاعل الضوئي وذلك في وجود عوامل مؤكسدة ( اي قادرة علي اكسدة المركبات وتصبح هي مختزلة) مثل مركبات السيانيد الحديدية Ferrocyanide ومركبات اكسالات البوتاسيوم الحديدية ferric Potassium oxalate ومركبات الكرينون التي تختزل الي الهيدروكونيون , حيث تتحول ايونات الحديدك الي حديدوز ويتأكسد الماء اي تحل تلك المركبات محل NADP والذي يعتبر مستقبل الأيدروجين في عملية البناء الضوئي
عند سقوط الضوء الذي طول الذي طول موجتة 680 ملليميكرون علي كلورفيل أ والذي يعرف بالنظام الصبغي الاولي Pigment system (PSI) فيصطدم فوتونات الضوء مع الكلورفيل فيصبح جزئ الكلورفيل مرتفع الطاقة و يتم ذلك بانتقال الكترون من مدار قريب من النواه الي مدار أبعد و يظل جزئ الكلورفيل في تلك الحالة المرتفعة من الطاقة excited state لفترة وجيزة جدا تبلغ 10-9 ثانية فاذا لم تستخدم الطاقة فأنها تتبد في صورة اشعاع Fluorescence وقد يعقد الالكترون من جزئ الكلورفيل .
يتأكسد الكلورفيل في) PSI) بفقد الالكترون فيستقبلة صبغة Ferrodoxin وهي الصبغة التي تستقبل الالكترون وتقوم باختزال NADP و هي عامل مساعد بروتيني . ويتم اختزال المرافق الانزيمي المعروف باسم NADP في وجود أنزيم NADP reductase - Ferredoxin ويتحول NADP الي NAD PH و مصدر الايدروجين هنا هو الماء.
لعدم توفر المرافق الانزيمي الحامل للايدروجين NADP والانزيم الذي يقوم باختزالة فان صبغة Ferredoxin تدفع تيار الالكترونات الي مستقبلات هي بالترتيب سيتوكروم b ثم سيتوكروم f ثم الي الصبغة cu- containing
Plstocyanine Protein ( PC ) ثم مرة آخري الي كلورفيل أ حتي يحافظ النظام الصبغي الأول (PSI) علي صورتة المختزلة المانحة للاكترونات وفي تلك الدورة يفقد الالكترون طاقتة و الذي يمنحها الي المركب ADP ليكون مركبATP باضافة الفسفور الي ADP في نظام يعرف باسم القسقرة الضوئية الدائرية Cyclic photo photophoshorylation .
قد تأتي الألكترونات من أكسدة الماء فعندما يسقط الضوء علي الماء فأن جزيئات الماء تتأكسد الي أيونات اكسجين تتصاعد وأيدروجين و الكترونات
2 يد 2 أ أ2 + 4 بروتين (H ) + 4 الكترون

يستقبل الالكترونات صبغة Plastoquinone التى تختزل وتقوم بنقل الالكترون خلال Cyt b ثم Cyt f ثم الي المركب plastocyanine (P C ) ثم الي كلورفيل a ( PSI ) لتعويض الالكترون المفقود والذي استخدم في اختزال NADP الي NADP H2 واثناء ذلك يفقد الالكترون طاقتة ويتكونATP في نظام يعرف باسم الفسقرة الغير دائرية Non cyclic photophosphorylationثم تستعيض صبغة plastoquinone عن الالكترون المفقود بالكترون آخر من أكسدة الكلورفيل b (PS II ) نتيجة اكسدتها ضوئية و يعوض كلورفيل ب الالكترون المفقود من أيونات الايدروكسيل الناتجة من الماء
و علية ينتج من التفاعل الضوئي مركبان هامان لعملية اختزال ثاني اكسيد الكربون هما المركب الغني بالطاقة ATP و كذلك الموافق الانزيمي المختزل NDP H2

النوعين السابقين من الفسقرة تسميان بالقسقرة الضوئية لتميزها من الانواع الآخر من القسقرة والتي لا تعتمد علي الضوء لاتمامها كالتي تحدث اثناء التنفس ومن الواضح أن عملية القسقرة الضوئية اللادائرية هي أساس عملية البناء الضوئي في النبات الراقي مع امكانية حدوث القسقرة الضوئية الضوئية الدائرية جنبا الي جنب معآ اما القسقرة الدائرية فقد تحدث في النباتات الاقل رقيا حيث تستغل مركبات اختزالية آخري غير الماء مثل يد 2 كب وغيرها . و تقوم تلك النباتات باعطاء الأيدروجين و الألكترونات الي كلورفيل أ مباشرة عن طريق صبغة البلاستوكينون و السيتوكرومات وتقوم هذة الكائنات مثل البكتريا بالحصول علي الطاقةعن طريق أكسدة هذة المركبات المختزلة بعملية تسمي البناء الكيميائي Chemosynthesis

ثانيا : تفاعل الظلام او تفاعل بلاكمان : Blackman reaction
يسمي هذا التفاعل الكيماوي يتفاعل دروة كالفن ويتم اثناء هذا التفاعل و الذي يتكون منة عديد من الخطوات الحيوية الانزيمية اختزال Co2 الي مركبات كربوهيدراتية باستعمال نواتج تفاعل الضوء السابقة الذكر وهي NADP H2 ؛ ATP

العوامل المؤثرة علي عملية البناء الضوئي
أ- العوامل الخارجية :
1) الضوء :
عند معدلات مناسبة من الحرارة وثاني اكسيد الكربون نجد أن معدل عملية البناء الضوئي تزداد بازدياد الكثافة الضوئية الي حد اقصي يقل بعدة معدل عملية البناء الضوئي ، وعند ازدياد الطاقة الضوئية الي حد بعيد نجد أن هناك عامل آخر يبدأ في التداخل في عملية البناء وهو الاكسدة الضوئية Photo oxidation بمركبات الخلية الحية مما يؤدي الي استخدام الأوكسجين المتصاعد من عملية البناء الضوئي في أكسدة الكثير من محتويات الخلية وتسمي هذة الظاهرة Secularization اما من حيث اطوال الموجات الضوئية فقد بينا أن هناك موجات تزيد عندها كفاءة البلاستيدات الخضراء في امتصاص الضوء مثل الازرق و الاحمر ( 466- 650 ملليمكرون ) و لذلك فان كفاءة عملية البناء بالتالي تصل الي اقصاها عند هذة الموجات .

2) تركيز ثاني اكسيد الكربون :
عند درجات حرارة وكثافة ضوئية ملائمة نجد ان ك 2أ يعتبر العامل المحدد لسرعة عملية التمثيل الضوئي . و يتأثر محتوي الهواء الجوي بثاني اكسيد الكربون بمستوي الرطوبة الجوية فعند ارتفاع رطوبة الجو يزداد تركيز ك 2أ ولذلك عادة ما يلاحظ ازدياد معدل البناء الضوئي في الأيام ذات الضباب عن غيرها اذا كانت العوامل الأخري غير محددة لهذة العملية . وقد وجد أن عملية البناء الضوئي تستمر في الأسراع كلما ارتفع تركيز ك أ2 بالجو الي أن يصل الي 0.5% و لكن لمدد محددة حيث أن استمرار زيادة التركيز الي 10-15 يوم يؤدي الي ظهور بعض الأضرار علي النباتات

3) درجة الحرارة :
تختلف درجة الحرارة المثلي باختلاف طبيعة النبات وطبيعة البيئة ومدي تأقلمة معها . ورغم اتساع المدي الحراري الذي يتم عندة عملية البناء الضوئي الاأنة يلاحظ ان انسب درجات حرارية بالنسبة لاغلب النباتات النامية بالاجواء المعتدلة يصل ما بين 10- 35 درجة مئوية ويلاحظ أن معدل سرعة عملية البناء الضوئي يستمر في الأرتفاع بارتفاع درجات الحرارة من 10 الي 25 درجة مئوية بالنسبة لاغلب النباتات . ويؤدي رفع درجة الحرارة عن المعدل السابق الي انخفاض سرعة عملية البناء و يرجع ذلك اساسا للتأثير الضار للحرارة المرتفعة علي بروتوبلازم الخلايا الحية وخاصة الانزيمات المتواجدة بها كما قد يرجع التأثير الضار الي تراكم نواتج عملية البناء أو قد يرحع التأثير الي قلة كفاءة ذوبان ك أ2 في بخار الماء بغرف الثغر وبالتالي قلة ما يصل منة الي بلاستيدات .
4) الماء :
وجد ان الكمية اللازمة من الماء لاستمرار عملية البناء الضوئي تقدر بحوالي 1 % فقط من جملة الماء الممتص بواسطة النبات . وقد لوحظ أن معدل او سرعة البناء الضوئي يرتفع اذا ما حدث جفاف بسيط بالأوراق ( 15 % فقد ماء ) ولكن هذا المعدل ينخفض تماما اذا ما وجد جفاف شديد بهذة الاوراق (45 % فقد ماء) حيث أن فقد الماء الذي يبدأ بالخلايا الحارسة يؤدي الي الانكماش وبالتالي قفل الثغور فيقل معدل التمثيل تبعا لذلك و يؤدى الجفاف أيضا الي قلة قابلية الأغشية البلازمية للنفاذية وجفاف الانزيمات النسبى والتي يلزم لها درجة تتبلل عالية وقد يؤدي الجفاف الي قلة سرعة تكوين المواد الكربوهيدارتية المتكونة من عملية البناء مما يؤدى الي تراكمها في الاوراق وبالتالي بطء سرعة عملية البناء .

5) تأثير العناصر الغذائية :
عند نقص بعض العناصر مثل ن ، بو ، مغ يلاحظ قلة معدل عملية البناء الضوئي لكونها عوامل مساعدة لبعض الانزيمات الخاصة بتفاعلات الظلام أو لضرورة وجودها لاتمام عملية تفاعل الضوء مثل الكلورين والذي يؤدى نقصة الي عدم امكان نقل الالكترونات من الماء الي كلورفيل ( ب ) وقد يكون نقص العنصر مؤثرا علي بناء الكلورفيل نفسة كما في حالة نقص الحديد أو النتروجين أو المغنسيوم وغيرها كما ان يدخل كمادة تفاعل أثناء تفاعلات الظلام


 
 توقيع : فهد محمد بن ناحل



رد مع اقتباس